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Abstract
In the 1980s, Berends, Burgers and van Dam (BBvD) found a nonabelian
cubic vertex for self-interacting massless fields of spin three in flat spacetime.
However, they also found that this deformation is inconsistent at higher orders
for any multiplet of spin-3 fields. For arbitrary symmetric gauge fields, we
severely constrain the possible nonabelian deformations of the gauge algebra
and, using these results, prove that the BBvD obstruction cannot be cured by
any means, even by introducing fields of spin that are higher (or lower) than 3.

PACS numbers: 11.15.−q, 11.30.Ly

1. Introduction

One of the main features of higher spin theories is that apparently the only way of building
a nonabelian interacting theory is to consider an infinite set of fields with an unbounded
value of the spin. Such an interacting theory is by now well known: Vasiliev’s equations
[1–3]. These equations admit (anti) de Sitter spacetime (A)dS as an exact solution, but not
the flat limit case with vanishing cosmological constant. The theory [1, 2] can be given a
Lagrangian formulation [4], albeit of a non-standard type. It has been proved recently [5]
that an interacting nonabelian theory built as a perturbative deformation of the free Fronsdal
theory in (A)dS spacetime [6] and containing an infinite tower of totally symmetric tensor
gauge fields with unbounded spin, does not admit any consistent flat limit. There are thus
doubts about the mere existence of a nonabelian theory around Minkowski spacetime.

To emphasize this, we show in this paper that a standard requirement of higher spin
nonabelian interactions in Minkowski spacetime cannot, at least in dimension 4, solve the

1751-8113/10/185401+13$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/18/185401
mailto:Xavier.Bekaert@lmpt.univ-tours.fr
mailto:nicolas.boulanger@umons.ac.be
mailto:serge.leclercq@umons.ac.be
http://stacks.iop.org/JPhysA/43/185401


J. Phys. A: Math. Theor. 43 (2010) 185401 X Bekaert et al

usual flat-space interaction problems. Some years ago, Berends, Burgers and van Dam
(BBvD) exhibited a pure spin-3 nonabelian cubic vertex in flat spacetime [7], and then found
that this vertex cannot be further extended to higher orders in deformations if only spin-3 fields
are considered in the spectrum of fields [8]. A similar result had also been obtained in [9].

In more technical terms, an obstruction to the existence of pure spin-3 quartic deformations
appeared. In the light of this negative result, they brought the idea that the obstruction, as well
as others of the same kind, could probably be cured by introducing fields of spin higher than
3. Recursively, this would suggest that every value of the spin is needed in order to build a
nonabelian higher spin theory in flat spacetime.

In this paper, we actually prove that the BBvD vertex is in fact strongly obstructed in the
dimension strictly higher than 3, in the following sense: even upon introducing higher (and/or
lower) spin gauge fields, it is not possible to cure the obstruction brought in by the spin-3
BBvD vertex found in [7]. The very reason for this strong obstruction in flat background is
that, as opposed to what happens in (A)dS background, the number of derivatives involved
in an expression constitutes a well-defined grading that increases with the value of the spin.
In (A)dS instead, the non-zero commutators of covariant derivatives introduce expansions in
powers of the cosmological constant involving different numbers of derivatives. Furthermore,
these expansions in powers of the cosmological constant are precisely what prevents one from
considering a consistent nonabelian flat limit of the (A)dS theories, as was mentioned already
in [10, 11].

The paper is organized as follows. In section 2, we review Fronsdal’s theory in the
antifield formulation, as well as the cohomological reformulation of the consistent deformation
problem. In section 3, we present our theorem on the lowest order deformations of the gauge
algebra arising from local cubic interactions between totally symmetric higher spin gauge
fields in flat spacetime. This is used in section 4 in order to address the specific case of the
BBvD vertex. In section 5, these results are briefly summarized as a conclusion.

2. Antifield formulation and consistent deformations

We use the antifield formalism [12–15] to derive our results on consistent deformations of
Fronsdal Lagrangians [16]. The BBvD vertex only involves the spin-3 gauge fields, but since
we allow them to mix with other gauge fields, we recall the Fronsdal Lagrangian for an
arbitrary spin-gauge field in flat spacetime, as well as the corresponding antifield formulation.

2.1. The Fronsdal Lagrangian

The field denoted by φa
μ1...μsa

is a totally symmetric field of spin sa and double-traceless:
ημ1μ2ημ3μ4φa

μ1...μsa
≡ 0. The index a labels a given set of fields with various values of the

spin. The Fronsdal tensor reads

Fa
μ1...μsa

:= �φa
μ1...μsa

− sa ∂ρ∂(μ1
φa

μ2...μsa )ρ +
sa(sa − 1)

2
∂(μ1

∂μ2
φ′a

μ3...μsa ), (1)

where φ′a stands for the trace of φa . The Fronsdal tensor is invariant under the gauge
transformations:

δξφ
a
μ1...μsa

= sa ∂(μ1
ξa
μ2...μsa ), (2)

where the gauge parameter ξa is traceless. The generalized Einstein tensor is defined as

Ga
μ1...μsa

:= Fa
μ1...μsa

− sa(sa − 1)

4
η(μ1μ2

F ′a
μ3...μsa ). (3)
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Finally, the Lagrangian can be written as

LF = 1

2

∑
a

φ
μ1...μsa
a Ga

μ1...μsa
. (4)

2.2. Antifield formulation

A set of fermionic ghosts Ca
μ1...μsa−1

is introduced, with the same tensorial structure as the
associated gauge parameter. In particular, the ghosts are traceless. They carry a pure ghost
number 1 (also denoted pgh Ca = 1). Then, two families of antifields are associated with the
fields and the ghosts: the fermionic antifields φ

∗μ1...μsa
a and the bosonic antifields C

∗μ1...μsa−1
a .

The antifield number (denoted antigh) counts the number of antifields with the following
weight: antigh φ∗

a = 1 and antigh C∗
a = 2.

The longitudinal derivative γ has a vanishing action on every field except φa , for which

γφa
μ1...μsa

= sa ∂(μ1
Ca

μ2...μsa ). (5)

On the other hand the Koszul–Tate differential has a non-vanishing action only on the antifields:

δφ
∗μ1...μsa
a := δLF

δφa
μ1...μsa

and

δC
∗μ1...μsa−1
a := −sa ∂ρ

[
φ

∗μ1...μsa−1ρ
a − (s − 1)(s − 2)

n + 2s − 6
η(μ1μ2φ∗

a
′μ3...μsa−1)ρ

]
,

(6)

where n denotes the dimension of the flat spacetime.

The generator
(0)

W , also called ‘solution of the master equation’, is then introduced:

(0)

W =
∫ [

LF + sa

∑
a

φ
∗μ1...μsa
a ∂μ1C

a
μ2...μsa

]
dnx. (7)

Let us define the antibracket (we denote collectively the fields and ghosts as 	i and the
antifields as 	∗

i ):

(A,B) = δLA

δ	i

δRB

δ	∗
i

− δLA

δ	∗
i

δRB

δ	i
. (8)

The generator satisfies (
(0)

W,A) = sA where s = δ + γ is the BRST differential of the theory.

2.3. Cohomology of γ

In this section, we introduce our notation for the cohomology of γ (whose elements are
called invariants). It has been shown [17] that the local functions of H ∗(γ ) for a spin-sa

Fronsdal theory in flat spacetime only depend on the antifields, the Fronsdal tensor Fa
μ1...μsa

,
the curvature tensor Ka

μ1ν1|...|μsa νsa
(which consists of sa curls of the field) and their derivatives,

as well as some non-γ -exact ghost tensors, denoted U
(i)a
μ1ν1|...|μiνi |νi+1...νsa−1

(i < sa), that are the
traceless part of the i times antisymmetrized ith derivatives of the ghosts. For example (i = 1)

U
(1)a
μ1ν1|ν2...νsa−1

= ∂[μ1C
a
ν1]ν2...νsa−1

− (s − 2)

n + 2s − 4
η[μ1|(ν2

∂ρCa
ν3...νsa−1)|ν1]ρ. (9)

Of course, the zeroth tensor (i = 0) is the undifferentiated ghost itself. More generally,
the ghost tensors U

(i)a
μ1ν1|...|μiνi |νi+1...νsa−1

give irreducible representations of the Lorentz algebra
o(n − 1, 1) labelled by Young diagrams made of two rows of respective lengths sa − 1 and

3
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i < sa . This property will be extremely useful in order to classify the nonabelian cubic
deformations.

In the case of a sum of Fronsdal theories, the cohomology of γ is simply the direct product
of the cohomologies of the separate theories. The cohomology is thus the following set of
functions:

H ∗(γ ) = {f ([	∗
a], [Fa], [Ka], Ca, U(i)a)}, (10)

where the square brackets around a field denotes the corresponding field and all its derivatives.
The functions f are polynomials in the local case (and the number of derivatives is bounded
from above).

2.4. Consistent deformations

The problem of consistently deforming a free theory, like Fronsdal’s theory, into a full,
interacting theory, can be reformulated within the antifield formalism [13]: if one considers an

expansion of the generator W in terms of a parameter g: W = ∫
w = (0)

W + g
(1)

W + g2
(2)

W + · · · ,
then the deformation is consistent if the full generator satisfies the master equation (W,W) = 0
to all orders in g. Since Fronsdal’s theory is consistent, the initial generator satisfies

(
(0)

W,
(0)

W) = 0, which implies that s is a differential (s2 = 0).

The first-order equation is (
(0)

W,
(1)

W) = s
(1)

W = 0. In the case of a local deformation,
(1)

W

must be the integral of a local n-form a := (1)
w and the equation s

(1)

W = 0 becomes a s-cocycle
relation modulo d:

s a + d b = 0, (11)

where the operator d denotes the total exterior differential. Since s-exact and d-exact terms

in the cocycle
(1)
w correspond to trivial deformations, the first-order inequivalent deformations

are described by the cohomology class H 0,n(s|d) , see [13, 14].
The obstructions under consideration in this paper arise when checking whether the

first-order vertices satisfy the master equation at second order, the local form of which reads

(
(1)
w,

(1)
w) dnx = − 1

2 s
(2)
w + d e. (12)

2.5. Cubic vertices

It has been shown, for values of the spin up to 4, that the only first-order nonabelian solutions
of the local master equation in flat spacetime are cubic in the fields, ghosts or antifields [5,
18–20]. For the spin-2 fields, this allows one to show [19] that Einstein’s gravity is the only
nonabelian consistent deformation with at most two derivatives of the free Pauli–Fierz theory
in the dimension n > 3. For the spin-3 case, we know [20] that the BBvD vertex is one of
the only two possible nonabelian first-order deformations of the spin-3 Fronsdal theory. For
values of the spin strictly greater than 4, it is still not proved within the antifield formalism
whether other kinds of deformations are possible, for example starting with a quartic first-order
vertex. However, the problem consisting in computing cubic first-order deformations can be
addressed. As will be shown in the next subsection, the classification of the candidates is
severe enough to put strong constraints on the allowed number of derivatives and on the gauge
structure of the deformation, depending on the spins involved. Let us also mention the very
powerful light-cone gauge method used in [21, 22].
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The components of the generator w carry a ghost number 0, which means that their
antifield number is equal to their pure ghost number. Hence, for cubic deformations, only
expressions with at most antifield number 2 will appear, since the pure ghost number of any
individual field is at most 1 in Fronsdal’s theory. Therefore, the cubic first-order deformation
can be expanded in the antifield number a = a0 + a1 + a2 and the master equation decomposes
into the following system of equations:

γ a2 = 0, (13)

δa2 + γ a1 + d b1 = 0, (14)

δa1 + γ a0 + d b0 = 0. (15)

The component a2 contains the information about the first-order deformation of the (a priori on-
shell) gauge algebra. The nonabelian deformations are thus characterized by a non-vanishing
a2 component. A cubic a2 is linear in the number 2 antifields and quadratic in the ghosts; it
does not depend on the fields. Consequently, the gauge algebra closes off-shell at first order
in the deformation, for cubic vertices. Moreover, the top form a2 is γ -closed by equation (13)
and any γ -exact term is trivial in the sense that it is the antifield number 2 part of an s-exact
term in a. Thus, a2 can efficiently be written as a representative of H 2(γ ). Finally, a2 is
defined modulo d , which allows one to only consider undifferentiated antifields. Therefore,
without loss of generality, the general structure of a2 reads schematically

a2 = f a
bc|(i)(j) C∗

a U(i)b U(j)c dnx, (16)

where f a
bc|(i)(j) are the internal coefficients. This expression of a2 encodes the structure

constants of the gauge algebra, at first order in the deformation. A Poincaré invariant a2 is
Lorentz-invariant (the spacetime indices must all be contracted) and does not explicitly depend
on the spacetime coordinates; therefore, the coefficients f a

bc|(i)(j) are constants.
Finally, the component of the maximal antifield number of the second-order

equation (12), which is the test that we use to exhibit the obstructions, reads

(a2, a2) dnx = γ c2 + d e2. (17)

This equation is the translation, within the antifield formalism, of the lowest order component
of the Jacobi identity for the gauge algebra.

3. General results on the gauge algebra deformations

In this section, we provide general arguments that simplify the classification of the cubic
nonabelian deformations for an arbitrary spin configuration. For any cubic configuration of
the type s − s ′ − s ′′ (i.e. including fields of respective spins s, s ′ and s ′′), with s � s ′ � s ′′,
there is a small number of possibilities of building consistent a2 expressions, and only some
of them are related to a consistent a1. As we said previously, a cubic a2 can always be written
in the form

a2 = C∗U(i)U(j)dnx + γ (. . .),

where the U(i) are non-γ -exact ghost tensors. A strong constraint on such candidates a2 is
that the product U(i)U(j) of ghost tensors (in general, with implicit contractions of indices)
must be contracted with the antighost C∗ which is itself a symmetric Lorentz tensor. The
Littlewood–Richardson rules will be used throughout this section in order to analyse all
possible contractions of the indices from the two ghost tensors and the antifield3. With the

3 More precisely, the specific rules for the product and division of the Young diagrams are applied here (see e.g. the
appendix A of [17] for a self-contained review of these Littlewood–Richardson rules).
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help of these rules, we will show that the previous constraint implies several strong conditions
on the allowed values of the numbers of derivatives i, j and of the spins s, s ′ and s ′′.

3.1. Product of ghost tensors

Let us consider a product of two ghost tensors U(i) and U(j), corresponding respectively to
the spins s1 and s2 (with s1 � s2).

(A) Firstly, we may study the minimal number of free indices in that product (in other words,
the maximal number of contracted indices).

(A.1) If i � j , all of the indices of U(i) can be contracted with s1 + i − 1 indices of U(j).
Let us visualize in terms of the Young diagrams that the symmetry properties of the
tensors resulting from the maximal contraction of indices:

U (i) : s1 − 1
i

, U(j) : s2 − 1
j

⇒ Maximal contraction : • s2 − s1 ⊗ j − i if j < s1

•
a

s2 − s1 + j − i− a
a

if j − i a j − s1 + 1 > 0 .

Since U(j) bears s2 + j − 1 indices, the minimal number Nmin of free indices is
s2 − s1 + j − i. Furthermore, these free indices can be symmetrized if j < s1 since
there is a component s2 − s1 + j − i in the tensor product. If j � s1, no
contraction of the two tensors U can be symmetrized and thus no Lorentz invariant
a2 can be built. Consequently,

max{i, j} < s1

in order to have symmetrizable free indices, as can be seen for the other case as well.
(A.2) If j < i < s1 � s2, let us visualize the ghost tensors as

U (i) : s1 − 1
j i− j

, U(j) : s1 − 1 s2 − s1
j

.

The maximal contraction is obtained by contracting the s1 −1 boxes and the j boxes,
which leaves one with a product: s2 − s1 ⊗ i− j , which always involves a
totally symmetric component. Explicitly, this reads

U(i)μ1ν1|...|μj νj |μj+1β1|...|μiβi−j |μi+1...μs1−1U
(j)

μ1ν1|...|μj νj |μj+1...μs2−1
. (18)

The β indices are free and there are s2 − s1 free μ indices. The minimal number Nmin

of free indices in this case is thus s2 − s1 + i − j .

The two cases can be gathered as

Nmin = s2 − s1 + |i − j |. (19)

(B) Secondly, the maximal number of free indices that can be symmetrized in a product
U(i)U(j) may also be studied.

(A.1) If i � j < s1, then j pairs have to be contracted:

U (i) : j s1 − j − 1
i

, U(j) : s2 − 1
j

. (20)

If one contracts less than j pairs of indices, some indices remain in the second line
of U(j) and the result cannot contain any totally symmetric component. This leaves
us with s1 + s2 + i − j − 2 free indices.

6
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(A.2) If i � j , in the same way i pairs have to be contracted, leaving s1 + s2 + j − i − 2
free indices.

Thus, the maximal number of free and symmetrizable indices in the tensor product of the
two ghost tensors is

Nmax = s1 + s2 − |i − j | − 2. (21)

3.2. Bound on the difference of the number of derivatives

After these general considerations on allowed products of two ghost tensors U(i) and U(j), let
us now consider again a candidate for a2, for a configuration s − s ′ − s ′′ with s � s ′ � s ′′.

Firstly, it is noted that there are no nonabelian deformations if s ′′ � s + s ′. For example,
there is no way of building a 1 − 1 − s deformation if s � 2, or a 2 − 2 − s deformation with
s � 4. This property comes from4 the fact that the product of two Young diagrams whose first
rows have lengths s and s ′ cannot contain a Young diagram whose first row has length s ′′ with
s ′′ � s + s ′.

Secondly, we can show a stronger property that involves the numbers of derivatives i
and j . Three cases have to be studied, related to the spin of the antifield. In the case of
a spin-s antifield C∗μ1...μs−1 , the minimum number of free indices in the product U(i)U(j) is
s ′′ − s ′ + |i −j |. In order for a2 to be Lorentz-invariant, every index must be contracted; hence,
the former number must be lower or equal to the number of indices of the antifield. We thus
obtain the following relation: s ′′ − s ′ + |i − j | � s − 1. In the case of a spin-s ′ antifield,
the same argument can be applied; it leads to the relation s ′′ − s + |i − j | � s ′ − 1, which
is the same as the first one. Finally, in the case of a spin-s ′′ antifield, the minimal condition
s ′ − s + |i − j | � s ′′ − 1 is always satisfied, since i < s and j < s imply |i − j | − s < 0
while, moreover, s ′ � s ′′. On the other hand, in this case, we have to consider the fact that
the maximum number of free symmetrizable indices must be greater or equal to the number
of indices of the antifield: s + s ′ − |i − j | − 2 � s ′′ − 1, and we obtain once again the same
condition.

Thus, for any combination of the fields, the spins have to satisfy the inequality

s + s ′ − s ′′ > |i − j | � 0. (22)

This provides an upper bound on the difference between the numbers of derivatives in the two
ghost tensors.

3.3. Conditions on the total number of derivatives

If we want to build Lorentz-invariant and parity-even expressions, the total number of indices
has to be even. For an antifield of spin s3 and the ghost tensors U(i) of spin s1 and U(j) of spin
s2, the numbers of indices are s3 −1, s1 + i −1 and s2 +j −1, for a total of s1 +s2 +s3 + i +j −3.
Thus, we find that, for a configuration s � s ′ � s ′′ ,

s + s ′ + s ′′ + i + j ≡ 1 (mod 2). (23)

Furthermore, let us emphasize that the total number of derivatives i + j is bounded. As
was mentioned in subsection 3.1, the numbers i and j must be strictly lower than the spins of
the two ghost tensors in order for the free indices to be symmetrizable. If U(i) is of spin s1 and

4 Note that this property follows from purely diagrammatic reasoning and therefore also applies in AdS. Indeed, it
can be checked that the structure constants of the higher spin algebra in [3] obey this bound.
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U(j) is of spin s2 with s1 � s2, then i � s1 − 1 and j � s1 − 1. Thus, we obtain the condition
i + j � 2s1 − 2. If we consider a candidate for a2 , this condition immediately shows that

i + j � 2s ′ − 2. (24)

More, precisely, if the spin-s antifield is considered, then the upper bound is 2s ′ − 2. If either
the spin-s ′ or s ′′ antifield is considered, the upper bound is even lower: i + j � 2s − 2.

3.4. A general theorem and a particular candidate

Let us summarize all previous considerations in the following theorem.

Theorem. Given a cubic configuration of fields with the spins s � s ′ � s ′′, the possible
Poincaré invariants a2 = C∗U(i)U(j) dnx are contractions of an undifferentiated antifield
number 2 antighost and of two ghost tensors, involving i and j derivatives. The spins and the
numbers of derivatives have to satisfy the following properties.

• 0 � |i − j | < s + s ′ − s ′′.
• s + s ′ + s ′′ + i + j is odd.
• In the case of a spin-s antifield: i + j � 2s ′ − 2.

In the case of a spin-s ′ or s ′′ antifield: i + j � 2s − 2.

To end up this section, let us mention that the candidate a2 with the highest number
of derivatives i + j = 2s ′ − 2 always satisfies equation (17) due to the large number of
derivatives involved in it. Let us also show that the same candidate a2 satisfies equation (14),
i.e. a corresponding first-order deformation of the gauge transformations exists. This is less
obviously seen than the previous property: we do not provide the corresponding a1 explicitly
but the equation ensures that it exists. In the case of an even number of derivatives (in other
words when the sum s + s ′ + s ′′ is odd), the candidate with 2s ′ − 2 derivatives reads

a2 = C∗μ1...μs−1U
(s ′−1)
α1ρ1|...|αλρλ|μ1ρλ+1|...|μs′−λ−1ρs′−1

×U
(s ′−1)α1ρ1|...|αλρλ| ρλ+1|...| ρs′−1|

μs′−λ μ2s′−2λ−2 μ2s′−2λ−1...μs−1
dnx, (25)

where λ = s ′+s ′′−s−1
2 . In terms of Young diagrams, this contraction can be seen as follows:

C∗ : s − λ− 1 s − λ− 1 ,U
(s −1)
s : λ s − λ− 1

s − 1
,U

(s −1)
s : λ s − λ− 1

s − 1
.

(26)

The variation of this expression under delta takes the form

δa2 = d(. . .) + s

[
φ∗μ1...μs − (s − 1)(s − 2)

2(n + 2s − 6)
η(μ1μ2φ∗′μ3...μs−1)μs

]
∂μs

[U(s ′−1)U(s ′−1)].

The action of ∂μs
on the spin-s ′ tensor U(s ′−1) is automatically γ -exact because it is not possible

to take one more curl. Actually, the action of ∂μs
on the spin-s ′′ tensor U(s ′−1) is also γ -exact

because the contraction of all free μ indices with the symmetric indices of the factor linear in
the antifield φ∗ prevents any more curls.

The case of an even sum s + s ′ + s ′′ is a bit more complicated. There are two possible
terms that have to be proportional in order for a1 to exist:

a2 = αCμ1...μs U
(s ′−1)
α1ρ1|...|αλρλ|μ1ρλ+1|...|μs′−λ−1ρs′−1

×U
(s ′−2)α1ρ1|...|αλρλ| ρλ+1|...| ρs′−2|ρs′−1

μs′−λ μ2s′−2λ−3 μ2s′−2λ−2...μs−1
dnx

8
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+ βCμ1...μs U
(s ′−2)
α1ρ1|...|αλρλ|μ1ρλ+1|...|μs′−λ−2ρs′−2|ρs′−1

×U
(s ′−1)α1ρ1|...|αλρλ| ρλ+1|...| ρs′−1|

μs′−λ−1 μ2s′−2λ−3 μ2s′−2λ−2...μs−1
dnx, (27)

where λ = (s ′ + s ′′ − s − 2)/2 and α, β are coefficients. In terms of Young diagrams, these
contractions read

C∗ : s − λ− 1 s − λ− 2 ,U
(s −1)
s : λ s − λ− 1

s − 2 1
,U

(s −2)
s : λ s − λ− 2 1

s − 2
,

and

C∗ : s − λ− 2 s − λ− 1 ,U
(s −2)
s :

λ s − λ− 2
s − 1 ,U

(s −1)
s : λ s − λ− 1

s − 1
.

This time, the computation of δa2 consists of four terms. The term involving the derivative
of the spin-s ′ tensor U

(s ′−1)
s ′ is automatically γ -exact and the term where the spin-s ′′ tensor

U
(s ′−1)
s ′′ is differentiated is γ -exact, thanks to the same arguments as for the odd case. On the

other hand, the terms where the U(s ′−2) tensors are differentiated are problematic. Fortunately,
the non-γ -exact terms that appear are the same in the two expressions and the coefficients α

and β can be fitted to obtain a γ -exact result.

4. Proof of the strong obstruction on the BBvD vertex

The BBvD first-order deformation [7] has been obtained in the antifield formulation in [20].
We denote the spin-3 ghost tensors T A

μν|ρ := U
(1)A
μν|ρ and UA

μν|ρσ := U
(2)A
μν|ρσ . The antifield

number 2 component a2 of the BBvD deformation contains two derivatives and reads

a2,BBvD = f A
BCC

∗μν

A

[
T B

μα|βT Cα|β
ν − 2T B

μα|βT Cβ|α
ν +

3

2
CBαβUC

μα|νβ

]
dnx + γ c2, (28)

where the capital internal indices span the multiplet of spin-3 fields. The corresponding
cubic vertex a0,BBvD contains three derivatives. It has been shown [20] that the second-order
expression, (a2,BBvD, a2,BBvD) as in equation (17), presents an obstruction containing terms of
the structure C∗T T U and C∗CUU , that are not γ -exact modulo d, and cannot be eliminated.
The coefficient of the obstruction is fABCf A

DE , whose vanishing implies the vanishing of the
deformation itself. Let us note that, in dimension 3, since UA

αβ|γ δ ≡ 0, the BBvD candidate
passes the test. In dimension 4, some Schouten identities could imply the weaker associativity
condition fAB[Cf A

D]E = 0; however, this still implies the vanishing of fABC in the end.
Furthermore, a new nonabelian cubic vertex with five derivatives was found in [20].

However, it vanishes in dimension 3 where the BBvD candidate involves the maximal possible
number of derivatives. In dimension 4, it has been shown that Schouten identities imply the
vanishing of the corresponding component of a2; thus the five-derivative deformation is abelian
in that case. Let us remark that the case of dimension 3 is a bit special, since traceless tensors
associated with a Young diagram whose first two columns have length 2 identically vanish5.
This implies that every field strength vanishes on-shell, which only allows topological theories,
for spin � 2.

5 More generally, in dimension n, any tensor associated with an irreducible representation of o(n) (and thus traceless),
whose Young diagram is such that the sum of the heights of the first two columns is greater than n, identically vanish
(see [23], p 394). Let us remark that, for n � 4, two-row tensors, such as the traceless part of the curvature or the
strictly non-γ -exact ghost tensors, are never constrained by this condition.

9
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We now want to prove that no other a2’s can provide the same kind of terms that could
compensate the obstruction. First, the antibracket (a2,BBvD, a2,BBvD) is of course quartic in
the spin-3 fields (in the extended meaning of fields, ghosts or antifields) and it contains four
derivatives. It can only be compensated by terms in another antibracket (a2, a2) which have
exactly the same structure. The only possibility of getting terms quartic in the spin-3 fields is
to take (a2, a2) of two expressions with the same spin configuration s − 3 − 3. Then, the first
rule of our general theorem ensures that 1 � s � 5. The nonabelian 1 − 3 − 3 and 2 − 3 − 3
deformations have been completely classified [5, 24]: in both cases, there is only one solution,
whose a2 is linear in the antifield with lowest spin (1 or 2) and antifield number 2. These
candidates satisfy trivially (a2, a2) = 0; hence they cannot help for the BBvD obstruction.

To complete the argument, we have to investigate the 3 − 3 − 4 and 3 − 3 − 5 cases. It is
rather simple: we will prove that the only a2 candidates that are related to a1 contain at least
three derivatives, which is sufficient to be sure that no obstruction containing four derivatives
will arise. The results of those two cases are presented in the next two subsections. The results
are sufficient to establish the inconsistency of the BBvD deformation in the dimension greater
than 3, in the parity-invariant case, thereby invalidating the hopes expressed by the authors
of [7, 8] concerning a possible solution of their problem by the addition of totally symmetric
higher spin contributions. Therefore, in flat spacetime, their spin-3 self-coupling is definitely
inconsistent and no totally symmetric higher spin field can cure this problem contrary to the
general belief. It is only in (A)dS that this candidate can play a role, as suggested by the
Fradkin–Vasiliev cubic vertices [10, 11].

Remark. The a2 components that are considered in the following for the 3 − 3 − 4 and
3 − 3 − 5 cases are not proved to be part of consistent first-order solutions. Anyway, since we
seek a negative result, it is obvious that if the obstruction remains when considering all of the
candidates, it would remain a fortiori if these candidates are obstructed at first order.

4.1. Study of a2 in the 3 − 3 − 4 case

Let us use the theorem of subsection 3.4, with s = s ′ = 3 and s ′′ = 4. The sum of the spins
is even; thus, the number of derivatives in a2 has to be odd. The maximum is 2s ′ − 3 = 3.
Furthermore, the difference between the numbers of derivatives acting on the two ghosts
obeys |i − j | < s + s ′ − s ′′ = 2, and is thus equal to 1. The possible strictly non-γ -exact
Lorentz-invariant expressions with one derivative read

(1)

t AB = C∗μνρCAα
μ T B

αν|ρ,
(2)

t AB = C∗AμνT B
μα|βC αβ

ν ,
(3)

t AB = C∗AμνCBρσ U
(1)
μρ|νσ .

(29)

Those with three derivatives are
(4)

t AB = C∗μνρT Aα|β
μ UB

να|ρβ,

(5)

t AB = C∗AμνT Bαβ|γ U
(2)
αβ|γμ|ν,

(6)

t AB = C∗AμνUB
αβ|γμU

(1)αβ|γ
ν.

(30)

The spin-4 internal indices have not been written explicitly since no symmetries can arise
involving them (similarly, in the next section, the spin-5 indices are not written as well). Let
us check that the candidates with three derivatives are related to a1:

δ
(4)

t AB = divergence + γ (. . .) + 4φ∗μνρσU
Aα| β

μ σ UB
να|ρβ − 6

n + 2
φ∗′ρσ U

Aνα| β

σ UB
να|ρβ. (31)

10
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This term is antisymmetric in AB; thus, a symmetric set of coefficients ensure the vanishing
of the non-γ -exact terms. The variation under δ of the two other terms provides the same

non-γ -exact term φ∗AμνρU
Bαβ| γ

ρ U
(2)
αβ|γμ|ν , so they vanish if

(5)

t AB and
(6)

t AB have opposite
coefficients. Finally, we get as candidates with three derivatives

a2,3 = k(AB)C
∗μνρT Aα|β

μ UB
να|ρβ dnx + lABC∗Aμν

[
T Bαβ|γ U

(2)
αβ|γμ|ν − UB

αβ|γμU
(1)αβ|γ

ν

]
dnx. (32)

On the other hand, the candidates involving one derivative are obstructed:

δ
(1)

t AB = divergence + γ (. . .) + 4

(
φ∗μνρσ − 3

n + 2
η(μνφ∗′ρ)σ

)[−T Aα
σ |μT B

αν|ρ + CAα
μ UB

αν|σρ

]
.

(33)

All the terms vanish if
(1)

t AB is multiplied by a symmetric coefficient, except one proportional
to the trace of φ∗: −4

n+2φ∗′νσCAαρUB
αν|σρ . This obstruction cannot be removed. The variation

under δ of
(2)

t AB and
(3)

t AB contains the obstructions φ∗AμνρUB
μα|ρβC αβ

ν and φ∗AμνρCαβU
(2)
μα|νβ|ρ .

Finally, the only possible 3 − 3 − 4 deformation contains three derivatives in a2. Even if the
vertex exists, which is not sure, the only terms in (a2,3, a2,3) contain six derivatives. This
cannot remove the obstruction of the BBvD deformation.

4.2. Study of a2 in the 3 − 3 − 5 case

The theorem of subsection 3.4 ensures that the number of derivatives in a2 is even, and is
not greater than 4. Furthermore, the two ghosts bear the same number of derivatives, since
|i − j | < 3 + 3 − 5 = 1. There are candidates with four, two and zero derivatives. Once again,
only the candidates with four derivatives satisfy equation (14). The possible terms with no
derivatives are

(1)
u AB = C∗μνρσCA

μνC
B
ρσ and

(2)
u AB = C∗AμνCBρσ Cμνρσ . (34)

Those with two derivatives are
(3)
u AB = C∗μνρσ T Aα

μ|νT
B
αρ|σ and

(4)
u AB = C∗AμνT Bαβ|γ U

(1)
αβ|γμν. (35)

Those with four derivatives are
(5)
u AB = C∗μνρσU

Aα| β

μ ν UB
ρα|σβ and

(6)
u AB = C∗μνUαβ|γ δU

(2)
αβ|γ δ|μν. (36)

Let us note that
(1)
u AB ,

(3)
u AB and

(5)
u AB are naturally antisymmetric over AB. It is quite

obvious that δ
(5)
u AB is γ -exact modulo d because the third derivative of the spin-3 ghost

are γ -exact. Then, we can consider δ
(6)
u AB , which is γ -exact modulo d, for the same

reason than the previous one and because ∂(ρU
(2)αβ|γ δ|

μν) is γ -exact. On the other hand,

obstructions arise for any of the other candidates. For
(3)
u AB , one of the trace term

remains, which is proportional to φ∗′μντUA
αμ|τσ T

Bα |σ
ν . For

(4)
u AB , the obstruction consists

of two terms, proportional to φ∗AμνρT Bαβ|γ U
(2)
αβ|γμ|νρ and C∗AμνρU

Bαβ| γ

ρ U
(1)
αβ|γμν . Finally,

with no derivatives, the obstruction of
(1)
u AB arises once again in the trace terms, it is

proportional to φ∗′μνρT A
αμ|νC

Bα
ρ . The obstruction of

(2)
uAB consists of two terms proportional

to φ∗AμνρCBαβU
(1)
ρα|βμν and φ∗AμνρT Bα|β

ρ Cμναβ . None of those obstructions can be removed;
the only possible cubic a2 thus involves four derivatives. Thus, any (a2, a2) term involves eight

11
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derivatives, this can of course not remove the BBvD obstruction. Since we have considered a
spin greater than 4, we are not sure if the cubic deformations are the only possible ones, but
any solution of degree higher than 3 will provide terms of power higher than 4 in (a2, a2),
which cannot compensate the BBvD obstruction either.

5. Conclusion

Within the antifield formalism and in the case of cubic vertices between symmetric tensor
gauge fields of any integer spins, we have introduced a set of criteria for the construction
of consistent deformations of the gauge algebra. Equivalently, these criteria are conditions
on the structure constants of the gauge algebra at first order in the coupling constants. We
have then shown that the Berends–Burgers–van Dam spin-3 vertex is obstructed at second
order in the coupling constants, even if one introduces other symmetric tensor gauge fields in
the theory. This invalidates, in Minkowski spacetime, the argument according to which the
obstructions arising for a given set of values of the spins can be cured by terms involving
higher values. This argument is related to the standard lore that an infinite tower of
fields with unbounded spin is needed in any consistent higher spin gauge theory. While
this general expectation is not questioned, our result confirms some doubts about the mere
existence of any consistent nonabelian Lagrangian formulation for higher spin gauge fields
in four-dimensional6 Minkowski spacetime, which would be obtained as a perturbative local7

deformation of Fronsdal’s theory. For flat spacetimes of higher dimensions, our results suggest
that presumably all nonabelian cubic vertices containing only totally symmetric gauge fields
and involving a number of derivatives which does not saturate the upper bound that we found
become inconsistent at second order because their gauge algebra does not close8. More
precisely, our argument essentially relies on the numbers of derivatives. Consistent first-order
vertices must involve a minimal number of derivatives. This minimum number increases
with the values of the spin of the three fields contained in the cubic vertex. The number
of derivatives is a good grading in flat spacetime, so the second-order equations involving
different types of vertices are, most of the time, linearly independent (because they contain
different numbers of derivatives). We can conjecture that many consistent cubic deformations
in Minkowski spacetime are strongly obstructed in the same way. However, in (A)dS the
number of derivatives is not a proper grading and we expect that the obstructions exhibited
for the flat-spacetime vertices do not show up in (A)dS , so that the Fradkin–Vasiliev cubic
Lagrangian [10, 11] (see also [27, 28]) could be completed to give a fully consistent nonabelian
Lagrangian theory to all orders in the coupling constant.
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6 The pure spin-3 nonabelian cubic vertex found in [20] exists only in higher dimensions (n > 4), but this one is not
obstructed at the level of the gauge algebra. Nevertheless, the existence of a corresponding quartic vertex remains an
open issue.
7 Our assumption of perturbative locality means that each term in the power expansion in terms of the coupling
constants must be local (e.g. each term in the expansion of the cubic string field exponential vertex is local, order by
order in the string length).
8 These remarks only concern nonabelian deformations, i.e. such that the algebra of gauge transformations is
noncommutative. Note that examples of nonlinear Lagrangians for massless higher spin fields in flat spacetime which
are consistent at all orders, do exist (e.g. the interactive theories [25] obtained from the tensionless limit of cubic
string field theory) but their gauge algebra is abelian (see, however, the recent paper [26]).
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